If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20a^2+13a+2=0
a = 20; b = 13; c = +2;
Δ = b2-4ac
Δ = 132-4·20·2
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-3}{2*20}=\frac{-16}{40} =-2/5 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+3}{2*20}=\frac{-10}{40} =-1/4 $
| 3p-5+5p+7=90 | | 1062=6(x+17 | | (6z+1)=77 | | 3x-3=-3(1-x | | 7x+2x=2x-1 | | 2v*2-88=0 | | n.2+3=8.n=6 | | 2(x+3)/2=18/2 | | +3=8.n=6 | | 6(x-5)+3=15 | | 3f+21=5f+9 | | 6x^2+8x=3x-4 | | -8x-14=5(2-x) | | 5^x-5^x-1=60+8(5^x-2) | | -4x+6=130 | | -12=5(6-3x)+8x | | -12=6(6-3x)+8x | | -3t+-8=2.5 | | 5d-9=-3d-13 | | 2(c+1)=(-7) | | 12x+3(2-5x)=16-8x | | -4x-8+6x=16-6x | | 8x+4(2x-7)=20 | | 4-6x+35-x+15-2x=360 | | 7x-2(x-3)=2x+6 | | 3x-5(x-1)=-5-2 | | 5x-71+2x-103-50+x=360 | | 45+n=135 | | 2x-112+126+2x+70=360 | | -8x-6=-5-27 | | 6m+3(4m+18=-108 | | 2(3x-2)=-4+6x |